3.325 \(\int \frac{\sec ^{\frac{3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=176 \[ -\frac{5 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 a^2 d (\sec (c+d x)+1)}+\frac{4 \sin (c+d x) \sqrt{\sec (c+d x)}}{a^2 d}-\frac{5 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{\sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[Out]

(-4*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) - (5*Sqrt[Cos[c + d*x]]*EllipticF
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a^2*d) - (5*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*a^2*d*(1 + Sec[c + d*x])) - (Sec[c + d*x]^(5/2)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x]
)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.250873, antiderivative size = 176, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {3238, 3816, 4019, 3787, 3771, 2641, 3768, 2639} \[ -\frac{5 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 a^2 d (\sec (c+d x)+1)}+\frac{4 \sin (c+d x) \sqrt{\sec (c+d x)}}{a^2 d}-\frac{5 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{\sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(-4*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) - (5*Sqrt[Cos[c + d*x]]*EllipticF
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a^2*d) - (5*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*a^2*d*(1 + Sec[c + d*x])) - (Sec[c + d*x]^(5/2)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x]
)^2)

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3816

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2))/(f*(2*m + 1)), x] + Dist[d^2/(a*b*(2*m + 1)), In
t[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]
)

Rule 4019

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/
(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx &=\int \frac{\sec ^{\frac{7}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx\\ &=-\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac{\int \frac{\sec ^{\frac{3}{2}}(c+d x) \left (\frac{3 a}{2}-\frac{7}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2}\\ &=-\frac{5 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac{\int \sqrt{\sec (c+d x)} \left (\frac{5 a^2}{2}-6 a^2 \sec (c+d x)\right ) \, dx}{3 a^4}\\ &=-\frac{5 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac{5 \int \sqrt{\sec (c+d x)} \, dx}{6 a^2}+\frac{2 \int \sec ^{\frac{3}{2}}(c+d x) \, dx}{a^2}\\ &=\frac{4 \sqrt{\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac{5 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac{2 \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{a^2}-\frac{\left (5 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a^2}\\ &=-\frac{5 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 a^2 d}+\frac{4 \sqrt{\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac{5 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{a^2}\\ &=-\frac{4 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^2 d}-\frac{5 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 a^2 d}+\frac{4 \sqrt{\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac{5 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 1.26467, size = 252, normalized size = 1.43 \[ -\frac{e^{-i d x} \cos \left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} \left (\cos \left (\frac{1}{2} (c+3 d x)\right )+i \sin \left (\frac{1}{2} (c+3 d x)\right )\right ) \left (-4 i e^{-i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \left (1+e^{i (c+d x)}\right )^3 \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-e^{2 i (c+d x)}\right )+i (12 i \sin (c+d x)+7 i \sin (2 (c+d x))+50 \cos (c+d x)+17 \cos (2 (c+d x))+29)+40 \cos ^3\left (\frac{1}{2} (c+d x)\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-i \sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{6 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

-(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(((-4*I)*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeom
etric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*(c + d*x)) + 40*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*Elli
pticF[(c + d*x)/2, 2]*(Cos[(c + d*x)/2] - I*Sin[(c + d*x)/2]) + I*(29 + 50*Cos[c + d*x] + 17*Cos[2*(c + d*x)]
+ (12*I)*Sin[c + d*x] + (7*I)*Sin[2*(c + d*x)]))*(Cos[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(6*a^2*d*E^(I*d*
x)*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 2.704, size = 405, normalized size = 2.3 \begin{align*} -{\frac{1}{6\,{a}^{2}d} \left ( 2\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( 5\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -12\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) \cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-2\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( 5\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -12\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) \cos \left ( 1/2\,dx+c/2 \right ) -48\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+86\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-37\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^2,x)

[Out]

-1/6*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*(5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/
2*c)*sin(1/2*d*x+1/2*c)^2-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2)))*cos(1/2*d*x+1/2*c)-48*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+86*(-2*s
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-37*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(
1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sec \left (d x + c\right )^{\frac{3}{2}}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^(3/2)/(a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^2, x)